Skip to main content

CVE-2026-22977 - net: sock: fix hardened usercopy panic in sock_recv_errqueue

CVE ID : CVE-2026-22977
Published : Jan. 21, 2026, 2:16 p.m. | 28 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: net: sock: fix hardened usercopy panic in sock_recv_errqueue skbuff_fclone_cache was created without defining a usercopy region, [1] unlike skbuff_head_cache which properly whitelists the cb[] field. [2] This causes a usercopy BUG() when CONFIG_HARDENED_USERCOPY is enabled and the kernel attempts to copy sk_buff.cb data to userspace via sock_recv_errqueue() -> put_cmsg(). The crash occurs when: 1. TCP allocates an skb using alloc_skb_fclone() (from skbuff_fclone_cache) [1] 2. The skb is cloned via skb_clone() using the pre-allocated fclone [3] 3. The cloned skb is queued to sk_error_queue for timestamp reporting 4. Userspace reads the error queue via recvmsg(MSG_ERRQUEUE) 5. sock_recv_errqueue() calls put_cmsg() to copy serr->ee from skb->cb [4] 6. __check_heap_object() fails because skbuff_fclone_cache has no usercopy whitelist [5] When cloned skbs allocated from skbuff_fclone_cache are used in the socket error queue, accessing the sock_exterr_skb structure in skb->cb via put_cmsg() triggers a usercopy hardening violation: [ 5.379589] usercopy: Kernel memory exposure attempt detected from SLUB object 'skbuff_fclone_cache' (offset 296, size 16)! [ 5.382796] kernel BUG at mm/usercopy.c:102! [ 5.383923] Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI [ 5.384903] CPU: 1 UID: 0 PID: 138 Comm: poc_put_cmsg Not tainted 6.12.57 #7 [ 5.384903] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 5.384903] RIP: 0010:usercopy_abort+0x6c/0x80 [ 5.384903] Code: 1a 86 51 48 c7 c2 40 15 1a 86 41 52 48 c7 c7 c0 15 1a 86 48 0f 45 d6 48 c7 c6 80 15 1a 86 48 89 c1 49 0f 45 f3 e8 84 27 88 ff <0f> 0b 490 [ 5.384903] RSP: 0018:ffffc900006f77a8 EFLAGS: 00010246 [ 5.384903] RAX: 000000000000006f RBX: ffff88800f0ad2a8 RCX: 1ffffffff0f72e74 [ 5.384903] RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffff87b973a0 [ 5.384903] RBP: 0000000000000010 R08: 0000000000000000 R09: fffffbfff0f72e74 [ 5.384903] R10: 0000000000000003 R11: 79706f6372657375 R12: 0000000000000001 [ 5.384903] R13: ffff88800f0ad2b8 R14: ffffea00003c2b40 R15: ffffea00003c2b00 [ 5.384903] FS: 0000000011bc4380(0000) GS:ffff8880bf100000(0000) knlGS:0000000000000000 [ 5.384903] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5.384903] CR2: 000056aa3b8e5fe4 CR3: 000000000ea26004 CR4: 0000000000770ef0 [ 5.384903] PKRU: 55555554 [ 5.384903] Call Trace: [ 5.384903] [ 5.384903] __check_heap_object+0x9a/0xd0 [ 5.384903] __check_object_size+0x46c/0x690 [ 5.384903] put_cmsg+0x129/0x5e0 [ 5.384903] sock_recv_errqueue+0x22f/0x380 [ 5.384903] tls_sw_recvmsg+0x7ed/0x1960 [ 5.384903] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5.384903] ? schedule+0x6d/0x270 [ 5.384903] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5.384903] ? mutex_unlock+0x81/0xd0 [ 5.384903] ? __pfx_mutex_unlock+0x10/0x10 [ 5.384903] ? __pfx_tls_sw_recvmsg+0x10/0x10 [ 5.384903] ? _raw_spin_lock_irqsave+0x8f/0xf0 [ 5.384903] ? _raw_read_unlock_irqrestore+0x20/0x40 [ 5.384903] ? srso_alias_return_thunk+0x5/0xfbef5 The crash offset 296 corresponds to skb2->cb within skbuff_fclones: - sizeof(struct sk_buff) = 232 - offsetof(struct sk_buff, cb) = 40 - offset of skb2.cb in fclones = 232 + 40 = 272 - crash offset 296 = 272 + 24 (inside sock_exterr_skb.ee) This patch uses a local stack variable as a bounce buffer to avoid the hardened usercopy check failure. [1] https://elixir.bootlin.com/linux/v6.12.62/source/net/ipv4/tcp.c#L885 [2] https://elixir.bootlin.com/linux/v6.12.62/source/net/core/skbuff.c#L5104 [3] https://elixir.bootlin.com/linux/v6.12.62/source/net/core/skbuff.c#L5566 [4] https://elixir.bootlin.com/linux/v6.12.62/source/net/core/skbuff.c#L5491 [5] https://elixir.bootlin.com/linux/v6.12.62/source/mm/slub.c#L5719
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...

About

Kenya Education Network CERT(KENET-CERT) is a Cybersecurity Emergency Response Team and Co-ordination Center operated by the National Research and Education Network of Kenya. KENET-CERT coordination center promotes awareness on cybersecurity incidences as well as coordinates and assists member institutions in responding effectively to cyber security threats and incidences. KENET-CERT works closely with Kenya's National CIRT coordination center (CIRT/CC) as a sector CIRT for the academic institutions. KENET promotes use of ICT in Teaching, Learning and Research in Higher Education Institutions in Kenya. KENET aims to interconnect all the Universities, Tertiary and Research Institutions in Kenya by setting up a cost effective and sustainable private network with high speed access to the global Internet. KENET also facilitates electronic communication among students and faculties in member institutions, share learning and teaching resources by collaboration in Research and Development of Educational content.